Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.
نویسندگان
چکیده
In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.
منابع مشابه
Sessile and Pendant Micro-Liter Drops Evaporate at Different Rates: An Experimental Approach
Evaporation of micro-liter drops from solid surfaces at room condition is mainly governed by diffusion. Therefore, there should be no difference between evaporation rate of sessile and pendant drops. However, some studies indicate a difference and explain the difference using buoyancy. The objective here is to reconcile the inconsistency in the literature. For that, first, by comparing two iden...
متن کاملFootprint geometry and sessile drop resonance.
In this work, we examine experimentally the resonance of a sessile drop with a square footprint (square drop) on a flat plate. Two families of modal behaviors are reported. One family is identified with the modes of sessile drops with circular footprints (circular drop), denoted as "spherical modes." The other family is associated with Faraday waves on a square liquid bath (square Faraday waves...
متن کاملNonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting.
We examine the nature of ac electrowetting (EW)-driven axisymmetric oscillations of a sessile water drop on a dielectric substrate. In ac EW, small-amplitude oscillations of a drop differ from the Rayleigh linear modes of freely oscillating drops. In this paper, we demonstrate that changes in the time-averaged contact angle of the sessile drop attributed to the presence of an electric field and...
متن کاملLateral vibration of a water drop and its motion on a vibrating surface.
The resonant modes of sessile water drops on a hydrophobic substrate subjected to a small-amplitude lateral vibration are investigated using computational fluid dynamic (CFD) modeling. As the substrate is vibrated laterally, its momentum diffuses within the Stokes layer of the drop. Above the Stokes layer, the competition between the inertial and Laplace forces causes the formation of capillary...
متن کاملShaken not stirred –On internal flow patterns in oscillating sessile drops
We use numerical (volume of fluid) simulations to study the flow in an oscillating sessile drop immersed in an ambient immiscible fluid. The drop is excited by a sinusoidal variation of the contact angle at variable frequency. We identify the eigenfrequencies and eigenmodes of the drops and analyze the internal flow fields by following the trajectories of tracer particles. The flow fields displ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2013